Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.011
Filtrar
1.
Front Microbiol ; 15: 1360844, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562477

RESUMO

Introduction: Microplastics (MPs) are widely distributed in the environment, causing damage to biota and human health. Due to their physicochemical characteristics, they become resistant particles to environmental degradation, leading to their accumulation in large quantities in the terrestrial ecosystem. Thus, there is an urgent need for measures to mitigate such pollution, with biological degradation being a viable alternative, where bacteria play a crucial role, demonstrating high efficiency in degrading various types of MPs. Therefore, the study aimed to identify bacteria with the potential for MP biodegradation and the enzymes produced during the process. Methods: The methodology used followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol. Results and Discussion: The research yielded 68 eligible studies, highlighting bacteria from the genera Bacillus, Pseudomonas, Stenotrophomonas, and Rhodococcus as the main organisms involved in MP biodegradation. Additionally, enzymes such as hydrolases and alkane hydroxylases were emphasized for their involvement in this process. Thus, the potential of bacterial biodegradation is emphasized as a promising pathway to mitigate the environmental impact of MPs, highlighting the relevance of identifying bacteria with biotechnological potential for large-scale applications in reducing MP pollution.

2.
Small ; : e2400348, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564790

RESUMO

Production of green hydrogen (H2) is a sustainable process able to address the current energy crisis without contributing to long-term greenhouse gas emissions. Many Ag-based catalysts have shown promise for light-driven H2 generation, however, pure Ag-in its bulk or nanostructured forms-suffers from slow electron transfer kinetics and unfavorable Ag─H bond strength. It is demonstrated that the complexation of Ag with various chalcogenides can be used as a tool to optimize these parameters and reach improved photocatalytic performance. In this work, metal-organic-chalcogenolate assemblies (MOCHAs) are introduced as effective catalysts for light-driven hydrogen evolution reaction (HER) and investigate their performance and structural stability by examining a series of AgXPh (X = S, Se, and Te) compounds. Two catalyst-support sensitization strategies are explored: by designing MOCHA/TiO2 composites and by employing a common Ru-based photosensitizer. It is demonstrated that the heterogeneous approach yields stable HER performance but involves a catalyst transformation at the initial stage of the photocatalytic process. In contrast to this, the visible-light-driven MOCHA-dye dyad shows similar HER activity while also ensuring the structural integrity of the MOCHAs. The work shows the potential of MOCHAs in constructing photosystems for catalytic H2 production and provides a direct comparison between known AgXPh compounds.

3.
J Contam Hydrol ; 263: 104339, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38564944

RESUMO

Plastic particles, measuring <5 mm in size, mainly originate from larger plastic debris undergoing degradation, fragmenting into even smaller fragments. The goal was to analyze the spatial diversity and polymer composition of microplastics (MPs) in North Chennai, South India, aiming to evaluate their prevalence and features like composition, dimensions, color, and shape. In 60 sediment samples, a combined count of 1589 particles were detected, averaging 26 particles per 5 g-1 of dry sediment. The water samples from the North Chennai vicinity encompassed a sum of 1588 particles across 71 samples, with an average of 22 items/L. The majority of MPs ranged in size from 1 mm to 500 µm. The ATR-FTIR results identified the predominant types of MPs as polystyrene, polyvinyl chloride, polyethylene, polyethylene terephthalate, and polypropylene in sediment and water. The spatial variation analysis revealed high MPs concentration in landfill sites, areas with dense populations, and popular tourist destinations. The pollution load index in water demonstrated that MPs had contaminated all stations. Upon evaluating the polymeric and pollution risks, it was evident that they ranged from 5.13 to 430.15 and 2.83 to 15,963.2, which is relatively low to exceedingly high levels. As the quantity of MPs and hazardous polymers increased, the level of pollution and corresponding risks also escalated significantly. The existence of MPs in lake water, as opposed to open well water, could potentially pose a cancer risk for both children and adults who consume it. Detecting MPs in water samples highlights the significance of implementing precautionary actions to alleviate the potential health hazards they create.

4.
Soft Robot ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557238

RESUMO

Microgrippers that incorporate soft actuators are appropriate for micromanipulation or microsurgery owing to their ability to grasp objects without causing damage. However, developing a microgripper with a large gripping range that can produce a large force with high speed remains challenging in soft actuation mechanisms. Herein, we introduce a compliant microgripper driven by a soft dielectric elastomer actuator (DEA) called a spiral flexure cone DEA (SFCDEA). The submillimeter-scale SFCDEA exhibited a controllable linear displacement over a high bandwidth and the capability of lifting 100.9 g, which was 670 times higher than its mass. Subsequently, we developed a compliant microgripper based on the SFCDEA using smart composite microstructure technology to fabricate three-dimensional gripper linkages. We demonstrated that the microgripper was able to grasp various millimeter-scale objects with different shapes, sizes, and weights without a complex feedback control owing to its compliance. We proved the versatility of our gripper in robotic manipulation by demonstrating adaptive grasping and releasing of small objects using vibrations owing to its high bandwidth.

5.
Front Bioeng Biotechnol ; 12: 1373130, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572363

RESUMO

Ureteral stenting is a common clinical procedure for the treatment of upper urinary tract disorders, including conditions such as urinary tract infections, tumors, stones, and inflammation. Maintaining normal renal function by preventing and treating ureteral obstruction is the primary goal of this procedure. However, the use of ureteral stents is associated with adverse effects, including surface crusting, bacterial adhesion, and lower urinary tract symptoms (LUTS) after implantation. Recognizing the need to reduce the complications associated with permanent ureteral stent placement, there is a growing interest among both physicians and patients in the use of biodegradable ureteral stents (BUS). The evolution of stent materials and the exploration of different stent coatings have given these devices different roles tailored to different clinical needs, including anticolithic, antibacterial, antitumor, antinociceptive, and others. This review examines recent advances in BUS within the last 5 years, providing an in-depth analysis of their characteristics and performance. In addition, we present prospective insights into the future applications of BUS in clinical settings.

6.
Chemistry ; : e202304275, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575394

RESUMO

Optically active poly(naphthalene-1,4-diyl) was prepared through helix-sense-selective polymerization of the corresponding monomers and also through circularly polarized light (CPL) irradiation, resulting in distinctive circular dichroism (CD) spectral patterns. Chirality of the helix-sense-selective polymerization -based polymer is ascribed to preferred-handed helicity while that of the CPL-based polymer to a non-helical, chiral conformation ('biased-dihedral conformation') with preferred-handedness which was stable only in the solid state. The helix of the helix-sense-selective polymerization-based polymer gradually racemized in tetrahydrofuran while it was stabilized by aggregate formation in a hexane-dichloromethane solution. Both helix-sense-selective polymerization- and CPL-based polymers exhibited efficient circularly polarized luminescence.

7.
Biopolymers ; : e23578, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38577865

RESUMO

Ocular drug delivery is constrained by anatomical and physiological barriers, necessitating innovative solutions for effective therapy. Natural polymers like hyaluronic acid, chitosan, and gelatin, alongside synthetic counterparts such as PLGA and PEG, have gained prominence for their biocompatibility and controlled release profiles. Recent strides in polymer conjugation strategies have enabled targeted delivery through ligand integration, facilitating tissue specificity and cellular uptake. This versatility accommodates combined drug delivery, addressing diverse anterior (e.g., glaucoma, dry eye) and posterior segment (e.g., macular degeneration, diabetic retinopathy) afflictions. The review encompasses an in-depth exploration of each natural and synthetic polymer, detailing their individual advantages and disadvantages for ocular drug delivery. By transcending ocular barriers and refining therapeutic precision, these innovations promise to reshape the management of anterior and posterior segment eye diseases.

8.
Adv Sci (Weinh) ; : e2308014, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600655

RESUMO

Epidermal electrophysiology is a non-invasive method used in research and clinical practices to study the electrical activity of the brain, heart, nerves, and muscles. However, electrode/tissue interlayer materials such as ionically conducting pastes can negatively affect recordings by introducing lateral electrode-to-electrode ionic crosstalk and reducing spatial resolution. To overcome this issue, biocompatible, anisotropic-conducting interlayer composites (ACI) that establish an electrically anisotropic interface with the skin are developed, enabling the application of dense cutaneous sensor arrays. High-density, conformable electrodes are also microfabricated that adhere to the ACI and follow the curvilinear surface of the skin. The results show that ACI significantly enhances the spatial resolution of epidermal electromyography (EMG) recording compared to conductive paste, permitting the acquisition of single muscle action potentials with distinct spatial profiles. The high-density EMG in developing mice, non-human primates, and humans is validated. Overall, high spatial-resolution epidermal electrophysiology enabled by ACI has the potential to advance clinical diagnostics of motor system disorders and enhance data quality for human-computer interface applications.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38602190

RESUMO

Hydrophilic anti-icing coatings can be energy-effective passive solutions for combating ice accretion and reducing ice adhesion. However, their underlying mechanisms of action remain inferential and are ill-defined from a molecular perspective. Here, we systematically investigate the influence of the counterion identity on the shear ice adhesion strength to cationic polymer coatings having quaternary alkyl ammonium moieties as chargeable groups. Temperature-dependent molecular information on the hydrated polymer films is obtained using total internal reflection (TIR) Raman spectroscopy, complemented with differential scanning calorimetry (DSC) and ellipsometry. Ice adhesion measurements show a pronounced counterion-specific behavior with a sharp increase in adhesion at temperatures that depend on the anion identity, following the order Cl- < F- < SCN- < Br- < I-. Linked to the freezing of hydration water, the specific ordering results from differences in ion pairing and the amount of water present within the polymer film. Moreover, similar effects can be promoted by varying the cross-linking density in the coating while keeping the anion identity fixed. These findings shed new light on low ice adhesion mechanisms and may inspire novel approaches for improved anti-icing coatings.

10.
Nanomedicine (Lond) ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593053

RESUMO

Aim: To investigate the influence of fluorine in reducing the adsorption of immune-reactive proteins onto PEGylated gold nanoparticles. Methods: Reversible addition fragmentation chain transfer polymerization, the Turkevich method and ligand exchange were used to prepare polymer-coated gold nanoparticles. Subsequent in vitro physicochemical and biological characterizations and proteomic analysis were performed. Results: Fluorine-modified polymers reduced the adsorption of complement and other immune-reactive proteins while potentially improving circulatory times and modulating liver toxicity by reducing apolipoprotein E adsorption. Fluorine actively discouraged phagocytosis while encouraging the adsorption of therapeutic targets, CD209 and signaling molecule calreticulin. Conclusion: This study suggests that the addition of fluorine in the surface coating of nanoparticles could lead to improved performance in nanomedicine designed for the intravenous delivery of cargos.


Nanomedicines are based around the delivery of therapies by tiny, nanosized delivery vehicles. This method offers a much better way of specifically targeting life-threatening diseases. For fast delivery, nanomedicines can be injected into the blood (intravenously); however, this often leads to an unwanted and exaggerated immune response. The immune system is activated by proteins in the blood that attach themselves to nanoparticles through various chemical interactions (the protein corona effect). Fluorine is a chemical routinely used in surfactants such as firefighting foam and more recently in molecular imaging and nanoparticles designed for the delivery of therapies aimed at cancer. While fluorine has great potential to improve the cellular uptake of therapies, little is known about whether it can also help camouflage the nanoparticles against the immune system responses. Here, using fluorinated polymer-coated gold nanoparticles, the authors demonstrate that fluorine reduces uptake by immune cells and is highly effective at reducing the binding of immune system-initiating proteins. This work successfully illustrates the rationale for more widespread investigation of fluorine during the development of polymer-coated nanoparticles designed for the intravenous delivery of nanomedicines.

11.
Angew Chem Int Ed Engl ; : e202405761, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587998

RESUMO

Vitrimers offer a unique combination of mechanical performance, reprocessability, and recyclability that makes them highly promising for a wide range of applications. However, achieving dynamic behavior in vitrimeric materials at their intended usage temperatures, thus combining reprocessability with adaptivity through associative dynamic covalent bonds, represents an attractive but formidable objective. Herein, we couple boron-nitrogen (B-N) dative bonds and B-O covalent bonds to generate a new class of vitrimers, boron-nitrogen vitrimers (BNVs), to endow them with dynamic features at usage temperatures. Compared with boron-ester vitrimers (BEVs) without B-N dative bonds, the BNVs with B-N dative bonds showcase enhanced mechanical performance. The excellent mechanical properties come from the synergistic effect of the dative B-N supramolecular polymer and covalent boron‒ester networks. Moreover, benefiting from the associative exchange of B-O dynamic covalent bonds above their topological freezing temperature (Tv), the resultant BNVs also possess the processability. This study leveraged the structural characteristics of a boron-based vitrimer to achieve material reinforcement and toughness enhancement, simultaneously providing novel design concepts for the construction of new vitrimeric materials.

12.
Angew Chem Int Ed Engl ; : e202403827, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589299

RESUMO

Organic radicals with narrow energy gaps are highly sought-after for the production of near-infrared (NIR) fluorophores. However, the current repertoire of developed organic radicals is notably limited, facing challenges related to stability and low fluorescence efficiency. This study addresses these limitations by achieving stable radicals in nonconjugated poly(diphenylmethane) (PDPM). Notably, PDPM exhibits a well-balanced structural flexibility and rigidity, resulting in a robust intra-/inter-chain through-space conjugation (TSC). The stable radicals within PDPM, coupled with strong TSC, yield a remarkable full-spectrum emission spanning from blue to NIR beyond 900 nm. This extensive tunability is achieved through careful adjustments of concentration and excitation wavelength. The findings highlight the efficacy of polymerization in stabilizing radicals and introduce a novel approach for developing nonconjugated NIR emitters based on triphenylmethane subunits.

13.
Mikrochim Acta ; 191(5): 253, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592400

RESUMO

The development of distance-based paper analytical devices (dPADs) integrated with molecularly imprinted polymers (MIPs) to monitor Escherichia coli (E. coli) levels in food samples is presented. The fluidic workflow on the device is controlled using a designed hydrophilic bridge valve. Dopamine serves as a monomer for the formation of the E. coli-selective MIP layer on the dPADs. The detection principle relies on the inhibition of the E. coli toward copper (II) (Cu2+)-triggered oxidation of o-phenylenediamine (OPD) on the paper substrate. Quantitative detection is simply determined through visual observation of the residual yellow color of the OPD in the detection zone, which is proportional to E. coli concentration. The sensing exhibits a linear range from 25.0 to 1200.0 CFU mL-1 (R2 = 0.9992) and a detection limit (LOD) of 25.0 CFU mL-1 for E. coli detection. Additionally, the technique is highly selective with no interference even from the molecules that have shown to react with OPD to form oxidized OPD. The developed device demonstrates accuracy and precision for E. coli quantification in food samples with recovery percentages between 98.3 and 104.7% and the highest relative standard deviation (RSD) of 4.55%. T-test validation shows no significant difference in E. coli concentration measured between our method and a commercial assay. The proposed dPAD sensor has the potential for selective and affordable E. coli determination  in food samples without requiring sample preparation. Furthermore, this strategy can be extended to monitor other molecules for which MIP can be developed and integrated into paper-microfluidic platform.


Assuntos
Escherichia coli , Fenilenodiaminas , Polímeros , Polímeros Molecularmente Impressos , Bioensaio
14.
3D Print Med ; 10(1): 13, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639834

RESUMO

BACKGROUND: Bioresorbable patient-specific additive-manufactured bone grafts, meshes, and plates are emerging as a promising alternative that can overcome the challenges associated with conventional off-the-shelf implants. The fabrication of patient-specific implants (PSIs) directly at the point-of-care (POC), such as hospitals, clinics, and surgical centers, allows for more flexible, faster, and more efficient processes, reducing the need for outsourcing to external manufacturers. We want to emphasize the potential advantages of producing bioresorbable polymer implants for cranio-maxillofacial surgery at the POC by highlighting its surgical applications, benefits, and limitations. METHODS: This study describes the workflow of designing and fabricating degradable polymeric PSIs using three-dimensional (3D) printing technology. The cortical bone was segmented from the patient's computed tomography data using Materialise Mimics software, and the PSIs were designed created using Geomagic Freeform and nTopology software. The implants were finally printed via Arburg Plastic Freeforming (APF) of medical-grade poly (L-lactide-co-D, L-lactide) with 30% ß-tricalcium phosphate and evaluated for fit. RESULTS: 3D printed implants using APF technology showed surfaces with highly uniform and well-connected droplets with minimal gap formation between the printed paths. For the plates and meshes, a wall thickness down to 0.8 mm could be achieved. In this study, we successfully printed plates for osteosynthesis, implants for orbital floor fractures, meshes for alveolar bone regeneration, and bone scaffolds with interconnected channels. CONCLUSIONS: This study shows the feasibility of using 3D printing to create degradable polymeric PSIs seamlessly integrated into virtual surgical planning workflows. Implementing POC 3D printing of biodegradable PSI can potentially improve therapeutic outcomes, but regulatory compliance must be addressed.

15.
Waste Manag ; 181: 199-210, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643515

RESUMO

Supercritical CO2 (scCO2) extraction assisted by complexing copolymers is a promising process to recover valuable metals from lithium-ion batteries (LIBs). CO2, in addition to being non-toxic, abundant and non-flammable, allows an easy separation of metal-complexes from the extraction medium by depressurization, limiting the wastewater production. In this study, CO2-philic gradient copolymers bearing phosphonic diacid complexing groups (poly(vinylbenzylphosphonic diacid-co-1,1,2,2-tetrahydroperfluorodecylacrylate), p(VBPDA-co-FDA)) were synthesized for the extraction of lithium and cobalt from LiCoO2 cathode material. Notably, the copolymer was able to play the triple role of leaching agent, complexing agent and surfactant. The proof of concept for leaching, complexation and extraction was achieved, using two different extraction systems. A first extraction system used aqueous hydrogen peroxide as reducing agent while it was replaced by ethanol in the second extraction system. The scCO2 extraction conditions such as extraction time, temperature, functional copolymer concentration, and the presence of additives were optimized to improve the metals extraction from LiCoO2 cathode material, leading to an extraction efficiency of Li and Co up to ca. 75 % at 60 °C and 250 bar.

16.
J Environ Manage ; 358: 120905, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643623

RESUMO

The global trend toward sustainable development, coupled with growing concerns about environmental pollution and the depletion of fossil energy resources, has contributed to the widespread implementation of biopolymers (BPs) as bio-solutions for geo-infrastructures stabilization. In this respect, previous attempts proved that soil treatment with BP can guarantee the strength improvement of geo-materials by satisfying environmental standards. However, the applications, mechanisms, and interactions of BPs within geo-environments need more investigations on their suitability for specific sites, long-term durability, and economic viability. The present study aims to provide an in-depth and up-to-date analysis of BPs and outline potential future paths toward BP applications. To this end, after examining the process of producing BPs, we investigate bio-physicochemical behavior and their function mechanism within the soil matrix. In addition, the impact of environmental conditions on soil stabilization with BPs is evaluated. Finally, some recommendations are offered for selecting the types and doses of BPs to improve soil against erosion and to obtain high hydrodynamic resistance. The results outline that bio-chemical mechanisms (including bio-cementing, bio-clogging, bio-encapsulation, and bio-coating) play significant roles in stabilizing cohesive and non-cohesive soil properties. Besides, the findings suggest that the efficacy of BPs depends upon various factors, including the composition and concentration of BPs, soil characteristics, and the magnitude of electrostatic and van der Waals forces formed during bio-chemo-reaction, biocrystallization, and bio-gel production. Between various BPs, using Xanthan gum (XG) and Guar gum (GG) exhibited optimal efficacy, enhancing mechanical strength by up to 300%. Furthermore, BPs concurrently reduced permeability, erosion, compressibility, and shrinkage characteristics. Applying BPs in soils improves germination and vegetation growth, lowers the wilting rate, and reduces soil acidity (considering their natural origin). Overall, selecting suitable BPs was found to be dependent on key factors, including temperature, curing time, and pH. The findings from this study can provide a scientific foundation for planning, constructing and preserving of bio-geo-structures in various construction sites.

17.
J Pharm Sci ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38643899

RESUMO

Resistance to antibiotics such as Ciprofloxacin (CIP) is becoming a critical issue and needs to be addressed globally. CIP is widely used because of manifold uses; however, the long-term therapy poses serious health risks including FDA black box warnings such as tendinitis and peripheral neuropathy. Therefore, nanotechnology-based products can be an effective measure to improve therapeutic outcomes by maintaining the dose at the target site while reducing the dose-dependent toxicity. Biodegradable and biocompatible polymers, Chitosan (CS) and Hyaluronic acid (HA) were used in this work due to their diverse biological characteristics. A simple yet economical ionic gelation method was employed to synthesize nanoparticles with a plexus-like network; nanoplexes, followed by spray-drying to obtain the dry powders to improve stability. Quality by Design (QbD) approach was utilized during the study for robustness and standardization followed by Design of Experiment (DoE) for optimization in a holistic way. The mean particle size of the optimized powder sample was found to be 301.1 nm with a percentage encapsulation efficiency (% EE) of 78.8 %. In-vitro dissolution studies corroborated the controlled release of CIP over 48 h. Also, mathematical kinetic modeling was applied to obtain thorough insight into the mechanism of drug release. Moreover, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were presented to be lower in the case of prepared dry powder as compared to CIP, stating that nanotechnology can improve antimicrobial activity.

18.
J Biomed Mater Res A ; 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644548

RESUMO

Degenerative spinal pathology is a widespread medical issue, and spine fusion surgeries are frequently performed. In this study, we fabricated an injectable bioactive click chemistry polymer cement for use in spinal fusion and bone regrowth. Taking advantages of the bioorthogonal click reaction, this cement can be crosslinked by itself eliminating the addition of a toxic initiator or catalyst, nor any external energy sources like UV light or heat. Furthermore, nano-hydroxyapatite (nHA) and microspheres carrying recombinant human bone morphogenetic protein-2 (rhBMP-2) and recombinant human vascular endothelial growth factor (rhVEGF) were used to make the cement bioactive for vascular induction and osteointegration. After implantation into a rabbit posterolateral spinal fusion (PLF) model, the cement showed excellent induction of new bone formation and bridging bone, achieving results comparable to autograft control. This is largely due to the osteogenic properties of nano-hydroxyapatite (nHA) and the released rhBMP-2 and rhVEGF growth factors. Since the availability of autograft sources is limited in clinical settings, this injectable bioactive click chemistry cement may be a promising alternative for spine fusion applications in addressing various spinal conditions.

19.
Artigo em Inglês | MEDLINE | ID: mdl-38644562

RESUMO

Nonvolatile organic memristors have emerged as promising candidates for next-generation electronics, emphasizing the need for vertical device fabrication to attain a high density. Herein, we present a comprehensive investigation of high-performance organic memristors, fabricated in crossbar architecture with PTB7/Al-AlOx-nanocluster/PTB7 embedded between Al electrodes. PTB7 films were fabricated using the Unidirectional Floating Film Transfer Method, enabling independent uniform film fabrication in the Layer-by-Layer (LbL) configuration without disturbing underlying films. We examined the charge transport mechanism of our memristors using the Hubbard model highlighting the role of Al-AlOx-nanoclusters in switching-on the devices, due to the accumulation of bipolarons in the semiconducting layer. By varying the number of LbL films in the device architecture, the resistance of resistive states was systematically altered, enabling the fabrication of novel multilevel memristors. These multilevel devices exhibited excellent performance metrics, including enhanced memory density, high on-off ratio (>108), remarkable memory retention (>105 s), high endurance (87 on-off cycles), and rapid switching (∼100 ns). Furthermore, flexible memristors were fabricated, demonstrating consistent performance even under bending conditions, with a radius of 2.78 mm for >104 bending cycles. This study not only demonstrates the fundamental understanding of charge transport in organic memristors but also introduces novel device architectures with significant implications for high-density flexible applications.

20.
J Fluoresc ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630204

RESUMO

The meta-phenylenediamine polymer, when hyper-cross-linked, exhibits a minimal fluorescence intensity. However, the introduction of silver ions induces a significant increase in intensity, attributed to the plasmonic effect. This heightened intensity is selectively increased more upon the addition of thiosulfate ions. Capitalizing on this property, a fluorescence probe was developed. The correlation between fluorescence intensity reduction and S2O32- concentration follows a linear and consistent pattern. The precursor's response to diverse anions such as SO42-, CO32-, HPO42-, Cr2O72-, F-, Cl-, Br-, I-, H2PO4-, CH3COO-, NO3-, ClO-, and HCO3- was also examined. Under optimal conditions, the probe exhibited a linear range of 0.5-3 µM with a detection limit of 0.01 µM. Its effectiveness was demonstrated in measuring thiosulfate concentrations in aqueous media.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...